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b Accelerator and Beamline Magnets
Dipole Magnet: Dipole magnet is a device used to bend the path of charged

particles during beam transport. The radius of curvature of a charged particle in a
constant magnetic field perpendicular to its path is,

Tron Yoke 1 _ Vo B _02998BIT] o _ 0.041,,[amp]n
R p p  plGeVic] h[cm]
\ 77 —1
L h/ /// n=number of turns h=pole gap
féﬂ ’% Quadrupole Magnet: A device used to focus charged
1}7/ :E particle beam during beam transport.
Particle trajectory Let us see what is the relationship between focal length, f, and the

in a magnetic f‘e'd\ A | quadrupole strength. Fig. A shows bending of a charged particle in a
magnetic field perpendicular to the plane of the paper and "B"
shows optical analogue of focusing. Then the deflection angle,
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Field free region :
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The quadrupole magnets provide material free aperture and
focusing.

k[m™]

A conventional quadrupole magnet used in synchrotrons
has four iron poles with hyperbolic contours.
Interesting features:

The horizontal force component depends only on the

horizontal position of the particle trajectory. Similarly
for the vertical axis.

F.=-evgx and F, =evgy — 4

A single "quad” can provide focusing only in one plane
because of the magnetic field configuration. Hence, one
needs at least two consecutive quadrupole magnets to
get overall focusing of all charged particles.

1 1 1 L  f= focal length of 1s* quad -
— =—+t————— f= focal length of 2" quad —
VA Y ’ ]

L = separation between two quads

Linear Machine: Contains only dipoles and quadrupoles.

In these machines the horizontal and vertical motions
are "completely decoupled”
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Sextupole Magnet: These are used for chromatic corrections

during beam transport, storing or beam acceleration.

The sextupole magnets generate non-linear magnetic field
and introduce horizontal and vertical motion of the beam

iz Iron Yoke

1 ' 2 2 '
Bﬁgg (x"=y7), B, =g'xy

v 6u,nl -
g'= 84/ )

The momentum-independent sextupole strength is given by,

! ' 2
I [ = 0.2998 g'[Tesla/ m”]
pP plGeV /c]

. . . B, =g + sxy +1—0(3x2y—y3)+...
Multipole Field Expansion: General : 6 (Vertical bending field)
multipole field expansion is given by,

1
B,=B,, + g + —s(x> = p?)+ ..
7 (Horizontal bending field)

In an un-coupled case,

1
B,=0 and B, = B,, Foxdosxth—sx 4., S 00re quadrupole, sextupole and octupole

" strength parameters, respectively

Thus, eB, eB, e es
y 00 (S8 S

p /p pK 219,\

Dipole Quadrupole Sextupole contributions
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Beam Transport and FODO Lattice

A beam transport comprises of magnetic elements that form a lattice which guides the
charged particle beam from one point to another. Such a beam generally traverses

through a vacuum beam pipe.

Lattice may be for
- Beam transfer line
- Circular beam storage ring or accelerator
- Linear accelerator

FODO Lattice:

A lattice comprising symmetric quadrupole triplets that
can focus beam in both X and Y planes or

a lattice comprising of Focusing-Drift-Defocusing-Drift
with quad strengths.

Beamline and Circular Machine:

FODO lattice can be repeated as many times as needed
to form a beamline or a circular machine.

FODO Period
<

S
S -

12QF QD 1/2QF

Nomenclature
k(s)%Symmetric FODO

]

12QF QD 1/2QF

Nomenclature

A
k(s) FDipole

QF QD



JE
aE Weak Focusing Accelerators
So far we have assumed that the trajectory of the path of any
particle in a beam is always perpendicular to the dipole magnetic
field in a circular accelerator. Suppose a particle has a vertical
angle = 0. Then the particle follows a spiral path and gets lost.
Therefore we need an additional focusing force to keep the
particle stable.

We know that for an ideal orbit
mvz
R

For any other particle the restoring force is given by, F = m}‘: —qvB, 10

2

= qvB, = Restoring Force = o qvB,=0 —— 9

To keep the beam particle focused one needs the gradient component in the magnetic

field. dB dB
\ B, =B, +—=x+..=B, (1+i y£+...)
d Y dx g B, dx R

v

\ dB

AL < B, [1-n= | with n=--2%r _ Field Index

g R 0, dx 11
|
I Then one can show that if 0<n<1 ("Steenbeck’s criterion”)
1 particle can be focused in both x and y planes and beam
o :*zi‘R) can be made stable.
: ]
Reference Pamclieing A circular accelerator with this stability criterion is
focused called a "Weak Focusing Accelerator”
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Weak Focusing Accelerators (cont.)

An optical analogue of weak focusing accelerator is shown here

Closed orbit for p >p,

Central Design orbit
(Closed orbit for p =p,)

Xo = D(S)i—p
0

Closed orbit for p <p,



2= Strong Focusing Accelerators
The circular accelerators with magnetic
field gradients Y4

s 11 s
n<<-—land n>>1— 12
used alternatively also provide very high
stability o the beam. These are called /
"Strong Focusing Accelerators” N N
Christofilos (1950) n>>1 n<<-1 Alternating gradient focusing
Courant, Livingston and Snyder (1952) Combined function magnets

Combination of focusing and de-focusing
quads shown in Fig. B with f,=-f; will give

1 1 1 L L
=) 7=71+72—f1f2 A .. Always focusing AT
Optical analogue of such an accelerator with the —— n:_;;f’f | o
combination of focusing and de-focusing quads rclosed orbit for e, "ols)<Dls)-£2
isshown in Fig. B .

B | closed orbut
for p=pe

-,

closed orbit for pep,

Closed Orbit for the strong focusing lattice

Earlier strong focusing accelerators are
built with combined function magnefts.
Recent strong focusing accelerators used
separated function magnets; CERNPS ~+288
Dipoles for bending Fermilab Booster | n=165, -207
Quads for focusing
Sextupoles for chromatic corrections

Accelerators with combined
function magnets

Fermilab Recycler | n=620, -598




35 Coordinate System

Reference orbit
(Center of the bea
Or Ideal orbit

Or Design orbit

Y

Y We use an orthogonal right handed coordinate system
X (y.x,s) that follows the reference orbit particle.

. This is a moving coordinate system with
X,y - deviation of particle trajectory from reference
. orbit at the point of interest "O* “
Trprﬂ"iZTe"f s - tangential vector at "O* "
o - individual particle trajectory.
This will be our coordinate system in the rest of our analysis

Hill's Equation:
From this picture, )
Horizontal Plane |~ 4 (do)* =[dg,(py + )]+ (dx)* = (ds){l + ﬂ > dyp, = ds
dX Sn_'\allsan le 0
appr‘oximagﬁon or do = ds{l + i} — 13
Lo
O Part. Traj- The equation of motion is going o be with respect to the
S Reference reference orbit.
Note that in the deflection plane
d’x d¢, dg
dx'=dg,—dp = x'"'= = —
h—dg ds* ds ds 14
’ SUbSTITUTlng dg, :ﬁ, d¢:d_o-:£|:1+ij| — 115
O o Po PPl P
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We get the equation of motion as,
x..:L_L{HL} —116
Pe P Py

For the monochromatic beam with momentum p,, the curvature of the charged particle
in an electromagnetic field is given by,

1 B

-5 =i[Boy +gx+£(x2 —y2)+..}

P Py Do 2

{Lm} — 117
e,
Then, ’
x..:L_{LJrkx}{HL}:{kJF 12}6 <_verysmallso we
Lo Lo Po Lo can neglec‘r

Thus, the equation of motion in horizontal plane becomes

2

Lo

1
x"+Kx =0; |with K =|Fk+
O

Similarly in vertical plane

dB,. Notice that this equation a) has not got dipole
strength, b) change in sign 186

X'—kx = 0: |with & = L Lo«
Po dy

X
The term P in the above equation describes the "weak focusing” of a bending
0

magnet. In a large accelerator this term can be neglected.
10
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Momentum Dispersion:

In reality, the particles in a beam are not monochromatic. Now let us look at a
particle that has a small momentum offset, i.e.,

A
p = py+Ap = p,(1+0); =p—p — 19
0
Then the curvature is rewritten as,
B
Lo sy =SB, + gt i-6+6-..]
P Py Po
. {L ‘o i} —120
Po Lo
Thus, the equations of motion become
] _ 5
¥ Ax = Do One can combine 5 This has bending term
an comboil X _ 9 | p(s) and focusing term
yirky = o these two into one |1 TR (s)u p, | k. K(sis called spring
£ equation as, constant

— 21

These are equations of motion for "strong focusing” charged particle beam accelerators
(and for the beam transport lines). This equation is called "Hill's equation”.

Notice that the magnitude of the focusing strength is a free parameter.

11



26  Solutions for the Equation of Motion (piecewise method)

Let us solve the simpler case of Hill's equations for a monochromatic beam., i.e., 3=0.
u''+K(s)u =20 — 22

The principal solution to this equation (assuming K is a constant) are,
For K >0:C(s)=cos(VKs) & S(s)= \/l_sin( VK s)

—1 23

For K < 0:C(s) = cosh( \/7s)& S(S)—\/731nh(\/7s)

which are linearly independent. "C"= cosine like function and "S"= sine like function.
They satisfy initial conditions at s= 0
C0)=1,C"'(0)=0, S(0)=0 S'(0)=1 —124

Any arbitrary solution can be written as a linear combination of C and S

u(s)=C(s)u, +S(s)u’y with Yo as arbitrary initial coordinates

u'(s)=C'"(s)u, + S'(s)u', u', of the particle trajectory 25

In matrix form this is written as,

u(s) | | C(s)  S(s) || u, Iy u, — 26
u'(s)| [ C'(s) S'(s)|lu'y] O [ul

The determinant =CS’-C’S and its derivative, CS”’+C’S’-C’S’-CS"’=CS"’-C”’S=0 are
independent of s

12



25 Solutions for the Equation of Motion (cont.)

For the initial conditions of s=0, the 2x2 matrix becomes,
C(s) S(s) 1 0 . .
= unit matrix
C'(s) S'(s)]_, |0 1 27

Further, with negligible dissipating forces we find that, for any arbitrary beamline, the
determinant

C(s) S(s)

=1 — 28
C'(s) S'(s)

detM:‘

Remark: There are some cases where the above determinant #1. This means there
might be some accelerating/decelerating or quantum effect to be taken into account.

If det M <1 Damping — 129

>1 Anti - damping

13



2F Transformation Matrices for the Accelerator Components

Here we deal with some commonly used accelerator components

A: Pure focusing quadrupole: L _¢ k>0, s=i. Set 8=vki=+k(s-s,) . Then,
Po
0 sin( &) . o0 1 0
My = cos€) Jk | Forathinlens, 120, M, { y 1} _L oy
— Jk sin( 6) cos( 0) 30 N f
B: Pure defocusing quadrupole: pL=O, k<0, s=1I. SeT6’=\/Wl=\/W(S—So). Then,
0
cosh( @) sinh( 9) 1 0 1 0
M, = k| |: For athin lens, 10, M b ={_kl 1} BRI
— Jlk| sinh( &) cosh( 8) 31 /
C: Drift space: pL=O, k=0, s=L . Set 6=+ki=+k(s-s,). Then,
0
1 L with lim sin ¢ with gp:\/?L — 132
D= 0o 11 ! ®»
o —>0

D: Quadrupole Doublet:

A R e T S S R A
M{‘L 1M0 IH 1 1]: R A A G

33

14
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E: FODO cell -

[1 LF 0{1 L} 11 0
M=o 1l= o 1ll-—= 17
f f

L I’

P §

for
L

fZ

FODO cell - symmetric quadrupole triplets

s

1 1oo][1 of, 1 1
TR
2f 2f l2f Y Moy

L2
1-=
0]: I

L
L 2f

(1+

Transformation Matrices (cont.)

(Focusing+Drift+Defocusing+Drift)

——134

L]

2L(1——

( 2f)

£) 1+ L2
f 217 ]

Nomenclature

T

k(s)

il

QF QD

Symmetric FODO

k(s% . D

QD

1/2QF

35

1/2QF

We make the following point which is critical for beamline or accelerator design.

These transformation matrices enable us to follow a charged particle through a transport
line/accelerator made of an arbitrary number of drift spaces, quadrupoles and bending
magnets. Thus, the final transfer matrix for any system looks like,

M=MM, ..M,

36

If the sequence of elementary matrices represent components all around a circular
accelerator, then we can use this matrix to investigate stability of transverse

oscillations.

15



e Stability criterion

We demand that in a synchrotron or transport line the spacing between lenses and
strength of the these lenses should provide stable oscillations for passage of a
charged particle beam. This implies the stability criterion is the quantity,

n U,
M7 — 37
u,
must remain finite for an arbitrary value of n. M is the matrix for one turn or

repetition period. Then it can be shown that, the stability criterion can be met if,

1 — 38

< Trace M <
2
For FODO lattice (symmetric triplets or otherwise) the stability criterion will be

-1

2 2

112 <1=o0<2- <o

7 =

L
or f>— Trajectory of an
2 individual particle

Betatron Oscillations:
Now we can sketch oscillations of a particle
traversing through a lattice described

above. These oscillations are called \/ A v A \/ A V'
betatron oscillations

Also, note that the particles do not have QF QD QF
any slope and are on axis do not exhibit the

oscillations. 16
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A Solutions for the Equation of Motion (closed form)
The equation of motion u''+K(s)u =0 has the following features,

1.  The quantity K is a function of s
2. Kis periodic for important class of accelerators, e.g., circular accelerators

= K(s+C)=K(s) Cisarepeat distance or "super-period” 20
3. Closely resembles that for simple harmonic motion
Then the general solution of such an equation can be given by
u(s) = Aw(s)cos[ w(s)+ ?)] Quantities independent of s 41
|

w(s) is a periodic function with periodicity "C"

By substituting for u(s) in Eq. 22 we get, u"+K(s)u =0 — 22

u'+K(s)u=-A[2w'y'+wy'")sin(y +0)+ (w'-wy >+ Kw)cos(y +5) =0
Equating the sine term to zero =S2wy'twy"'=0=2ww'y'+wiy "= (wiy')

or y'= ¢l ; C1 is an arbitrary constant of integration

2

Thus, the phase of the oscillation of particle advances according to

so+C
’ Cl1 Because w(s) is periodic, this integral is
sy > s, +C)=Ay, = j w2 (s) ds independent of choice of s,

— 42

17



2= Solutions (closed form) (cont.)

Now we can express the transformation matrix M in terms of "4” and w(s). To do that,
we rewrite the general solution as,

u(s) = Al w(s)cos(w(s)) + A2 w(s)sin( v (s)) — 43

and

A2C1 A1C1

u'(s):{Alw# }cos(gy)+{A2w'— }sin((//)

Now we set the initial values of v and u’ at s=s, with phase angle = 0 and solve for 41
and 42, which gives, A1=u0/w and A2=(wu,-u,w’)/CI. Then the transfer matrix in terms
of phase advance vy (s,+C)= Ay looks like,

ww' W |
{u} _ cos(Ay,)— 1 sin(Ay ) asm(ch) {u}
' ' 2 ' '
SotC | = 1+(WZW /cl) sin(Ay,) cos(Ay,)+ Y sin(Ay ) “ls,
B w/ C1 |
B cos(Ay . )+ asin(Ay.) Ssin(Ay,) 1 ——— 44
- —ysin(Ay,) cos(Ay.)—asin(Ay,) || u' N
" (s) 1 dp(s) +a?
wo(s S ww' +a
s)= ,0(S) = —— = — and y(s) = — 45
B(s) o1 (s) > s o1 y(s) 5

The functions a, B and y are called "twiss" parameters or "Courant -Snyder" parameters
18
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F Tune of an accelerator- Solutions (closed form) (cont.)
The phase advance can be written as, (after setting Cl1= 1)

sn+C
o T4
Ay = ds
Ve j B(s)
t 1 ' 1 .
And can be shown that Ay, = I%ds and y'= Bs) is the local phase advance
In particular for a circular machine, the number of betatron oscillations per turn
1 |
V= ds ]
2 y B(s) g

is called the "tune" of the machine.

The general solution to the equation of motion

becomes u(s) = A/p(s)cos[w(s)+5] — 48
In this case one can show that

yu >+ 2omu '+ Lu "> = 4° < Courant -Snyder invariant

— 49
is invariant at any point in the lattice. Notice that this is an equation of ellipse in

(u,u’)-space with 4° as its area. Hence, we conclude that the phase-space enclosed by
the particle is constant (if it is not accelerted).

19
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Solutions (closed form) (cont.)

In a circular machine, each time a particle passes a particular point in the ring its
coordinates will appear as a point on the ellipse given by its amplitude and its slope at
that point. Such a phase-space ellipse looks like, <\Tu

R . R

Notice that the orientation of the
ellipse changes from location to
location through the lattice
because the twiss parameters change from point to
point. But the area remains constant.

Admittance: This is the phase space area associated with the largest ellipse that the
accelerator will accept.
Emittance: The minimum phase space area which embeds all particles in a beam. < ¢

Or, the area of the phase space ellipse spanned by the largest
amplitude particle in the beam.

We have two emittances in our study of transverse dynamics: horizontal and vertical

emittances.
20
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A Few Remarks on Emittance and RMS Emittance

In reality, the transverse emittance of a beam as defined earlier, is of limited merit
because it may become very large if one includes all beam particles. For example for
a Gaussian beam the emittance becomes infinite. This problem can be reduced by
quoting the emittance of a certain fraction of the beam, e.g. 90%, yielding &g,

One may use the rms emittance that averages over all particles with a weight given by
the distance of the particles from the "center":

2 Z —X)*- a' _—allx. x,x'
eg: & =\/<x2>.<x’2>—<x.x’> ,wi‘rh<x2>=“”(x () ==t ,)
rms > (xx) 2o x,x')

<x,z>:§<x—x) ) o Tdnx) <x.x,>:;<x—fc)-<x—x)-c(x,x)

Sdx¥)  Sdxy) Sdxy) e

This is the semi-axis-product of an ellipse. For a Gaussian distribution, the ellipse
contains 39% of the beam. (eggy, = 4.6 € pms)

At Fermilab, we use ggg9, = 6- € pps.

21



¥ Transverse Beam Dynamics in Terms of Betatron Functions

In term of twiss parameters the trajectory of a particle can be described by,

u(s) = Al y/B(s) cos(y (s)) + A2 /f(s) sin( y (s))
Now setting S = f,, at w =0, s=0and u(0)=u,, u'(0) =u',

. 1 . . :
and with w'= — the transformation in terms of twiss parameters will be,

\/g [cos(y) + asin(y)] \/187'80 sin(y) {u }

u
L} /ﬂllb’o [(a, — @) cos(y) — (1 + aeyy) sin(y)] \/% [cos(yw) — asin(y)] I

The y is the phase advance from s=0 to s=s. In general, this can be for any s, 2 s,.

22
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Envelope and Envelope-Equations

The quantity,
E(s)=u__=+/6(s) _ TIs
gives the maximum transverse size of the beam at any point in an accelerator or beam

transport. This is called "beam envelope”.
It is important to note that +./s4(s) represents an envelope embedding all particles

at a point in the lattice.

The beam divergence is given by,

U = \E\/l +a’(s) =&y (8)

B(s)
Wherever «=0 the beam envelope E(s) has a local
minimum, “waist". At this point
E'(s)=-a_ |—=0.

— 53

gp(s)

< waist

All particles in the beam with emittance ¢ follow the trajectory given by,

u(s) = +/&f (s) cos[ y (s)+0,)]

Here the quantity 8. is an arbitrary phase constant for the particle i. Substituting
this in Hill's equation, and equating the cos(y+38) term to zero, we get,

288 "-B+4KB = 4 ~

23



W Envelope-Equations (Cont.)
With some mathematical rearrangements, one can write
2
E'"(s) - ¢ L KE (s)=0 called the “envelope equation”.
E’(s) 55

This plays very significant role in designing beamlines, accelerators and beam injection
and extraction regions.

If we take into account the Coulomb mean field due to all particles in the beam the
above equation will takes the following form,

2
E"(s)+KE (s) — ———— ¢ __y =
E-(s) 4E(s)
: 21 eak
with G = “=——;1 . = peak current, [, =17000Amp
[ 0 I(By )] ; electron characteristic current

pris relativistic factor . The above equation is called KV-envelope equation. This plays
very important role in understanding beam transport of space-charge dominated beam in
accelerators such as high intensity Photo-injector.

24
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A Transformation of Twiss Parameters

Let us take the initial conditions as u=u,, u’=u’, and A=¢. Then the Courant -Snyder
invariant becomes,

7/0“02 + 20ttty '+ oty = & —@ — 57
This represents the particle beam with emittance ¢ at s=s0=0. Then the transformation
matrix as s=0 is given by,

u(s) | | C(s)  S(s) | uy
L'(s)} - {C' (s) S'(S)}LJ
Solving these equations for u,and u’, and inserting them in Eq. A we gef,
B=CB,-25Ca,+S%y,
' +20uu'+fu’ =& with a=-CC B, +(S'C+SCHa,—SS'y,
y=C?B,-25'Ca,+ 5"y,
Or in matrix form the transformation of twiss parameters can be written as

— 58

Bl | ¢ —28C s? T4,
al=|-CC (§'C+SC) -SS|a 59
y Cv2 ~_28'C' Sv2 %o

The initial set of twiss parameters will be established from the parameters of injection
region and the rest can be evaluated using the above transformation matrix.

25
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Positi
charged m=)

Schematic of the beam in FODO lattice
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FODO lattice, Twiss parameters, Envelope
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Figure 28: a) A regular FODO lattice of focusing and defocusing lenses b)
Beta-function. ¢) Cosine-like trajectory for s = 0. d) Sine-like trajectory for
s = 0. e) One trajectory on several successive revolutions.

(According to M. Sands, The Physisof Electron Storage Rings, SLAC-121).

27



