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Lecture 3 (part 1)
Aspects of Longitudinal Beam 

Dynamics and Beam Acceleration 
in Synchrotrons 
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We have seen that most of the charged particle accelerators use accelerating 
“resonant” rf cavities. For example: cyclotron, synchrocyclotrons, synchrotrons, 
microtrons and all linear accelerators. The exceptions are betatrons. 
These rf cavities are excited by rf amplifiers.  This will not be part of this class. You 
may learn about these in one of the classes on RF systems.  

Accelerating RF Cavities

For fundamentals of electro-magnetic rf cavity resonators refer to Feynman Lectures 
II  Chapter 23.  

Examples of rf cavities:
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Generally,  fundamental mode of the resonant cavity is used for beam acceleration. The 
Q value of the cavity at that frequency is given by, 
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In low and medium energy synchrotron accelerators, the frequency of the cavity need to 
be varied continuously during beam acceleration.  For example, 

Accelerating RF Cavities (cont.)

Fermilab Booster (400MeV-8GeV)- 38MHz-52.81MHz
Main Injector (8-150GeV)- 52.81-53.14MHz
Tevatron (150GeV-1TeV)- 53.14MHz 53.14MHz +1kHz

Ferrite loaded tuners are commonly used to vary the frequency of the cavity if the 
frequency range is large .  However, in the case of the Tevatron the cavities are 
tuned to required frequency by varying the temperature of the cooling water.    

In any case, the accelerating E-field at the accelerating gap is given by,

h=harmonic number, 
frev= revolution frequency of the particle

Or the accelerating rf voltage is, 
      ;sin0 tVV ωφφ ==

In a circular accelerator the particles are accelerated by repeated passage through 
the same rf cavity or a number of rf cavities.  

Example: In case of the Tevatron, V0~1MV and φ ≈10deg.  The beam  circulates about 
4.77x106 times to  accelerate from 150 GeV to 1 TeV in about 100 sec. 
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Let the synchronous particle arrive at the accelerating gap at a phase φs.  Then, it always 
receives an additional energy of,   

Equations of Motion and Longitudinal Phase-space

The subscript ‘s’ stands for 
synchronous particle 

Now let us investigate the situations for non-synchronous particles.  

Let us define variables for any other particle as, 

Revolution frequency: 

RF phase   :
Momentum:
Energy      :

Azimuthal angle        : θθθ
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The azimuthal angle ∆θ is related to “ds” by, 

θ∆= Rds
Over one revolution this angle θ changes by 2π radians, while the rf phase φ changes 
by 2πh.  Hence,

θφψ ∆−=∆= h
The negative sign comes from the fact that a particle behind the synchronous particle 
arrives later in time. But ∆t>0.

ds
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The angular velocity ω is given by 

Equations of Motion & Long. Phase-space (cont.)

The revolution period  T is given by 
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Further, ∆E and ∆p are related by,
⇒∆=∆=    pRpc∆E sss ωβ

From Eq. 1 the average momentum gain per turn is  
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For the synchronous particle we get,

Equations of Motion & Long. Phase-space (cont.)
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Now ∆(Rp) can be written as, 
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Taking the difference between Eqs. 4 and 5 we get,
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This comes  from Eq. 3

Thus, the equation of motion in (∆E, φ)-phase space is given by, 
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Eliminating ∆E in Eq. 8 we get, 
Synchrotron Oscillation frequency and Transition Jump
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Assume that Rs, ps, η, ωs and V0 are all constant (or 
vary very slowly with respect to time. Besides, ∆φ=φ-
φs << 1 then the Eq. 9 becomes 

The quantity Ωs is called “synchrotron oscillation frequency”.  For stable longitudinal 
motion the synchrotron oscillation frequency must be a real quantity. 
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Consequently, during beam acceleration η cosφs > 0.  This implies, 

2
00     πφγγ <<∴>< sT      η

because

Hence, during the RF acceleration in circular accelerators we must jump the 
accelerating  phase angle φs π-φs , around the transition energy. This is called 
“transition phase jump”.  This  is critical for all hadron synchrotron accelerators.
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The synchrotron equations of motion Eq. 8 can be derived from  a “Hamiltonian”,  

Hamiltonian  Formalism and Phase-space Ellipse
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From this the equations of motion will be, 
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Then the longitudinal motion of the particles can be conveniently represented by their 
trajectories in (∆E, φ)-phase space . These trajectories will be contours of constant 
Hamiltonian given by , Eq. 11. Thus, with,
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Phase-space Ellipse and RF Bucket

9

Separatrix: the phase space contour 
separating stable and unstable region 
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RF Bucket (cont.)
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To calculate the bucket area we derive an expression for the separatrix. We know that 
the separatrix pass through (∆E=0, π- φs). Then, 

Bucket Area BA: The area enclosed by the separatrix and is given by, ∫∆= φφ dEBA )(
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The trajectory equation for the separatrix is,                  and hence,   sepxHH =

Now we can calculate the bucket area. After some mathematical adjustments we get,
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BA is maximum at α(φs =0)=1  for γ < γT. Such buckets are called “stationary buckets”. 
Similarly for γ > γT , α(φs =π)=1.

The separatrix has two turning points at φu and π- φs points, where ∆E=0. For φs =0, the 
turning points are, -π and π for γ < γT . 



RF Bucket (cont.) and Longitudinal Emittance
Bucket Height: This is the maximum height of a rf bucket,  given by,
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Longitudinal Emittance (LE): The phase space area 
occupied by the beam particles in (∆E, φ)-phase space.  

Units  of LE= eV-sec 

Beam Transfer and Longitudinal Matching: It is essential that in transferring a bunch 
from Ring-1 to Ring-2, we should match the bucket heights, i.e.,
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Measurement of LE and Beam Height at Constant Energy: 
By measuring bunch length ∆ (radian) and rf voltage one can 
measure the LE of the beam as follows,
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Comments: Measurement of LE of a bunch in moving bucket is quite complicated. This 
needs precise measurements of φs. 
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Beam Acceleration
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Beam Acceleration: After the beam is captured in matched stationary rf buckets the 
synchronous phase is changed in sync with the momentum ramp to accelerate the beam. 
The condition to be met is,    

 for  
2

 and for  
2
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otherwise the net acceleration force cancel out due to synchrotron motion.

)sin( seV
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dp φ=Momentum ramp Matched rf voltage and phase  with BA/LE ≈ 2.6

The synchronous angle  must satisfy 
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So far we have talked about rf buckets formed by sinusoidal rf waves generated by 
resonant rf cavities.  About 25-years ago a new type of rf system called  “barrier” or 
“wide-band” rf systems were developed at Fermilab by Jim Griffin. These systems can 
produce arbitrary voltage waveforms and have been adopted in accelerator operation at 
various places in the world.  

Barrier Buckets

The Hamiltonian for an arbitrary barrier wave form 
is  given by,
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The Recycler at Fermilab uses a barrier rf system exclusively for all of its rf 
manipulations.  A set of solid-state power amplifiers are used to energize these cavities. 
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Simulation of Longitudinal Beam Dynamics
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There are a number of longitudinal beam dynamics simulation codes available for 
accelerator design and applications.  For example: 

1. ESME- Jim. MacLachlan, Fermilab, http://www-ap.fnal.gov/ESME/ 
This code is widely distributed and is available on web  

2. TIBETAN – G. Wei, from BNL
3. LONG1D – Shane K.
4. ACCEL- John G., Los Alamos National Laboratory
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ESME uses the difference equations

The subscripts  and  label the quantities related to particle  and to synchronous 
particles, respectively. The k-th energy increment is at the end of the k-th turn.

This is a 2D program.  Will handle space-charge effects, beam-loading compensation, 
cavity impedances,  beam pipe effects etc.  
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Lecture 3 (part 2)
Beam Diagnostics
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Beam Diagnostics
Beam diagnostics is an essential constituent of any accelerator. Without proper 
diagnostics we are blind.  “An accelerator is just as good as its diagnostics.”

Beam diagnostic devices can be classified broadly into two types

a.Destructive
b.Non-destructive

The usage of these depends on what we want to accomplish.  

Signal processing, associated electronics, analogue signal or digital data 
treatments, are also subjects of great importance.   You will hear from Dr. Okugi. 

Below table (H. Koziol, CAS94-01) gives a general  list of various devices commonly 
used in accelerators.  
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Diagnostics Devices & Beam Properties Measured

Next, we will touch 
upon basic principles 
of some of these.
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Beam Intensity Monitors
Beam Current Transformers:
This device measures the total  number of electric charges in a burst of charged 
particle  beam.

RCs

Beam
 

burs
t

Principle: This consists of a ferromagnetic 
core with a high permeability metal tape 
wound as shown here.  The beam is made to 
go through as shown in the figure.  
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The band width of these devices are generally 
~100MHz.    

By terminating the secondary using a resistor 
one can measure the induced voltage- which 
is proportional to the beam current. 

A burst of beam acts as a single turn primary 
winding and the induced voltage in the 
secondary is given by,  
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Beam Intensity Monitors (cont.)
Direct Current Transformer: 

Faraday Cups:
This is a beam stopper and is the earliest device 
used to measure the total amount of  charges in 
the beam. Use of this is a destructive technique.

Principle:  In the absence of particle beam  
through the two ferrite rings, F1 and F2, 
the induced voltage  Vs in  “Circuit-B” due 
to an AC (~100Hz)  in “Circuit-A” will be 
zero.  A charged particle beam through the 
ferrites  introduces bias in the excitation of 
the cores.  Then, Vs ≠ 0., which in turn  
changes the compensating  current.  This 
effect can be used to measure the DC beam 
intensity. With an accuracy better than 2%.

Circuit A

Circuit B
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Wall Current Monitors (WCM)
This device is primarily used to measure the line-charge distribution of beam bunches 
in an accelerator or beam-line. This can also be used as an intensity monitor.

Principle: A charged particle beam , Ib in an accelerator is always accompanied by a 
“wall current”, Iw on its beam pipe due to its image charge, so that,

bw II −=
A gap bridged with resistors can be used to measure this wall current.

Beam
 

Examples:

Beam bunch in  
barrier buckets

Mountain Range
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WCM as Intensity Monitors:  
By integrating the area under 
each bunch one can measure 
the total charge/bunch.  
Individual bunch intensity in 
the Tevatron and in the MI 
are measured adopting this 
technique.



Beam Position Monitors (BPM)
This is used to measure the transverse beam position in a beamline  and accelerators.  
The beam has to be bunched.  

Widely used in circular 
accelerators and beamlines

BPM  theof width   w;
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These devices are available in three types,
1.electrostatic,
2.Magnetic
3.electromagnetic
The simplest form of the electrostatic BPM is a rectangular (or cylindrical) box cut   
diagonally.   For example,

Principle: As the beam passes through the BPM it will induce more electric charges on 
the metallic electrode closer to the beam than the other.  Then,

L R
L R

Beam
w

MI Cylindrical type BPM

These type of BPMs, properly installed, can be used to measure the beam position  
either in horizontal  or vertical  plane in the ring. 
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Beam Position Monitors (cont.)
Simultaneous measurements of H and V coordinates can be done using special BPMs  
like, 

These types of BPMs are used in the MI and buried in the  MI quadrupoles. 

With digital electronics, we can measure the beam positions to an accuracy better 
than  fraction of mm. For linear collider at collision points one need better resolution.

In e+ and e- machines, BPMs with “button “ electrodes are used. The sectional view of 
these detectors look similar to that shown in Figure A

MI BPM inside a Quad
A

In medium energy synchrotrons where rf frequency changes in a large range, the 
BPMs are used to control the beam acceleration.
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Beam Profile Monitors
These devices are used to measure horizontal and vertical beam profiles in an 
accelerator or a beam transport system.  This technique is semi-destructive. 
Secondary Emission Monitors (SEM):   
Principle: This uses the principle that the electrons are liberated from the surface 
under the impact of charged particle beam,  thus producing a flow of current.

This type of beam profile monitor consists of an array of thin ribbon of special 
materials with high secondary electron emission coefficient. 

Clearing 
electrodes

Sideway view Front view

Profile

Data  from Debuncher to 
Accumulator beamline

Horizontal 
profile

Vertical 
profile

This device is quite sensitive to very low intensity beam.
For example in the above figure I~1E7 pbars 2
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Beam Profile Monitors (cont.)

Multi-wire  Chambers (MW): 
Principle: This uses the principle that the electrons are liberated under the impact of 
charged particle beam,  thus producing a flow of current.  Difference between the SEM 
and MW is that the latter is not a surface phenomenon.   
Many of the Fermilab MWs in MI use gold plated tungsten wires (dia. ~75µm) with 
1mm pitch.

Move back 
and forth

BeamTi strips (Pitch=1mm,
0.2mm(w), 12.5 µm (depth))
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Beam Profile Monitors (cont.)
Wire Scanners:  
Principle: Instead of multiple wires as in the case of SEM, one can use a fast moving 
single wire through the beam and get the beam profile by measuring the position of the 
wire as a function of the flow of current.  

Flying Wire:  
Principle: A single wire (of a few micron thickness of carbon) is made to fly through a 
circulating beam. The scattered particles are detected using scintillators. 

Wire Position

Be
am

 I
nt

en
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ty

By gating the data this device can be used to measure bunch by bunch beam 
profile in circular accelerators.
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Beam Profile Monitors (cont.)

Principle: As a charged particle beam circulates in an accelerator
1.It ionizes the residual gas molecules in the beam pipe. (The typical vacuum of an 
accelerator is ~10-7 to 10-8 Torr). 
2.These ions are made to accelerate towards a micro-channel plate which is at a few 
kV relative to an anode. 
3.The micro-channel plates release many electrons for each ions that stricks it. 
4.These electrons are collected in an anode strip which gives beam profile similar to 
MW.

Example: 

Sigma

Center

Beam profile data 
taken during the 
beam acceleration 
in the Fermilab 
Main Injector 
from 8-120 GeV

8 GeV 120 GeV

Ion Profile Monitors: (non-distructive device)

26



Beam Profile Monitors (cont.)

Principle: The beam loss data from an incremental destruction of the beam in a storage 
ring using scraper can be used to determine the beam size.    

Beam Scrapers:
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Beam Loss Monitors (BLM)
These devices are used to monitor beam losses during beam transport, storage and 
acceleration.  They are quite critical in tuning the machines and protecting the sensitive 
devices in the accelerator.
BLMs are indispensible devices in the safety chains. 
These come in many varieties. For example,
1.Ionization Chambers
2.Scintillator plus photomultiplier

Photomultiplier immersed in 
a scintillator oil is a very 
inexpensive but very 
effective and fast BLM.

Beam loss monitor in 
MI-RR pbar extraction LAM

Ionization  Chambers:
Principle: This is a gas filled thin-walled chamber with 
a collector electrode inside. Typically, one uses argon 
gas. As a  particle passes  through it the gas gets 
ionized and the electrons move towards the anode 
and current can be measured. This phenomenon can 
be used to detect beam loss in an accelerator. 
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Schottky Detectors
Principle: A single particle in a circular machine would produce a delta-function type 
voltage pulse on a pickup electrode once every revolution period.  In the frequency 
domain, this appears as  set of lines equally spaced  with a spacing of revolution 
frequency.  If there is more than one particle with an energy spread then in time 
domain it looks like   random distributions of particles in the machine (hence name 
Schottky signal).  On the other hand in the frequency domain, it looks  like line equally 
spaced pulses with spacing of revolution frequency.    

Time domain Freq.  domain

Freq.  domain

Single Particle in a 
circular machine

Many Particle (with 
∆p ≠ 0) in a circular 
machine

Just noise
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Following features of the Schottky spectrum is quite relevant to beam diagnostics

1. Area   ∝ the beam intensity and is same for all bands

2.   Band width ∝ ; can be used to measure ∆p

29

Longitudinal Schottky Signals



Schottky Detectors (cont.)

Principle: The particles in a circular machine have also got betatron oscillations about 
the closed orbit with an oscillation frequency=tune of the machine.  Consequently, the 
Fourier analysis of the signals from an ideal position sensitive pickup detectors should 
show two peaks  symmetric to the central peak with their spacing such that  

Time domain Freq.  domainSingle Particle in a 
circular machine with 
betatron oscillation

Following features of the transverse Schottky spectrum is quite relevant to beam 
diagnostics

1. Area  under the side band ∝ emittance of the beam

2. The distance from the center ∝ fractional tune of the beam

30

Transverse Schottky Signals

 tunefractional andpeak   theofnumber  harmonic    where)( ==±= νν nfnf revSchottky

3. Width of the side band ∝ tune spread

Just noiseMany particles with a 
tune spread



Schottky Detectors (cont.)

Transverse 
Schottky data

HU
VL
HL
VL

Area of these 
distributions ∝ Transverse

emittance

L Longitudinal 
Schottky data

∝ Beam IntensityArea of these 
distributions

∝ Energy spreadRMS width

31
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Lecture 3 (part 3)

Practical Issues
Closed orbit, Dispersion Function, 

Chromaticity, Resonances

Chandra Bhat 
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So far we have investigated dynamics for monochromatic charged particle beam; 
i.e., with ∆p/p=0. In reality, the beam will have finite momentum spread. Now, we will 
extend the formalism for a particle beam with ∆p/p#0.  
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In this case, the particles with relative momentum deviation are “less” or “more”
strongly bent than the reference particle.  Consequently, they move about a different 
orbit that deviates from the reference orbit. 

The equation of motion we need to use is the inhomogeneous Hill’s equation,  

ρ
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Dynamics of Particle Beam with Momentum Spread 

we will drop the subscript on ρ, anyhow it 
is a function of “s”

The general solution to this differential equation may be written as shown below,
Complete solutions to 
homogeneous Hill’s 
equation

Particular solution to 
in-homogeneous Hill’s 
equation

It is obvious that, for a fixed  ∆p  ( δ= ∆p/p)  if ui is a solution, then nui will be a solution 
to n∆p/p. Therefore, we normalize ui w.r.t. δ, i.e.,

δδ )(')()()()()( 00 sDusSusCsDsusu h ++=+=
One assumes that the radial 
distance from the design 
orbit is proportional to δ

)()( sDsu
i

i =
δ

and write our general solution as,

The function D(s) is called 
“dispersion” function. 
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The function D(s) is defined as a particular 
solution for the inhomogeneous  equation 

The initial conditions for the homogeneous equation were,

This describes the momentum-dependent part of the motion. It is important to 
note that there is no dispersion function unless there is at least one dipole magnet 
in the beam line. 

ρ
1)()()(" =+ sDsKsD

Beam with Momentum Spread (cont.) 

For dispersion function we chose the initial conditions as , 

u(s) and u’(s) are related to their initial values by a linear transformation as discussed 
earlier,
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It can be shown that the dispersion  function can be calculated from 
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Now by substituting  for u(s) in Eq. 1 and equating the homogeneous part to zero, we get,    
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Drift Space: 

Beam with Momentum Spread (cont.)
(Transformation Matrices) 
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Dipole Sector Magnets: k= 0 no focusing  ϕ =l/ρ

=HM =VM  ;

In non-deflecting plane the magnet behaves like a  drift space.

Similar transformation can be derived for FODO cells including dispersion 35
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The design orbit of a circular machine is a closed curve that goes through the 
center of all quadrupoles.  This means, a particle with nominal momentum p0 that 
starts at some point with

u0=0        and 
u’0=0 radian

will move on this orbit for arbitrary number of revolutions.  Such an orbit is called 
“closed orbit”. In case of a beam transport system this is called “reference path”. 

closed orbit

However, a particle with p=p0 but with “non-zero displacement” and/or slope with 
respect to the closed/reference orbit will conduct betatron oscillations.   

In any case, the closed orbit need not have a well-defined shape because accelerators  
have a  number of horizontal and vertical dipole correctors.

36

In an accelerator, the 
transverse motion is divided 
into
1.Closed orbit which closes 
on itself
2.Small amplitude betatron 
motion around the closed 
orbit.



A particle with p≠p0 satisfies the inhomogeneous Hill’s equation and the total 
deviation of the particle from the reference orbit is written as,  

Closed-Dispersion Trajectory

The closed orbit condition for the dispersion function is strictly required only for one 
complete revolution, where C is circumference of the machine. Though the local 
periodic closed orbit condition is not necessary, it helps for lattice design.

uD(s) is called “off-momentum closed orbit”. In weak focusing machine the dispersion is 
constant, while, for a strong focusing case the dispersion is “s” dependent.

Now consider a particle with p≠p0 . For this particle the closed orbit is displaced from 
the ideal closed orbit. Also, we recall that the radial distance of this particle is 
proportional to δ.

δ)()( sDsuD =

)()()( sususu D+= β

describes betatron 
oscillations around

deviation  of the closed orbit for 
off momentum particle

Since K(s) is a periodic function of s, we impose D(s) and D’(s)  to be periodic as follows, 

)(')('
)()(
sDCsD

sDCsD
=+
=+

In literature.  a periodic dispersion 
is often denoted by η(s)

Remark:  For each particle energy only one equilibrium orbit exists in a given 
closed lattice.  
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The second implication clearly states that “a finite dispersion exists only if the 
number of betatron oscillations per revolution is different from an integer.”

Closed Dispersion Trajectory (cont.)

The dispersion function written in the above form  has two important implications:
1. The particle trajectory receives an additional kick only inside the 

bending magnet, i.e., ρ(t)≠0
2. To get stable orbit the tune ν≠ integer.

dtts
t
ts

sDs
Cs

s

)])()((cos[
)(
)(

sin2
)(

)()( πφφν
ρ
β

πν
β

η +−== ∫
+

Without getting into the detailed derivation we simply state that the closed 
periodic dispersion function  can be written as, 

ν is the tune of the 
circular machine. 

Physical interpretation of integer ν: 
A particle with ∆p will receive a different kick angle as compared to a particle on
the closed orbit as it enters a dipole in a ring. If ν is an integer then this particle 
arrives at the same point with angular deviation from the previous kick angle and 
adds up coherently from turn to turn. Soon the deviation of the path of the particle 
becomes too large to be confined within the beam pipe.   This brings about the 
fundamental phenomenon of resonances in accelerator physics.
Remark: The dispersion function as presented above is very useful for 
understanding the oscillatory behavior of closed orbits in presence of dipole errors 
or momentum errors. However, numerical calculations of dispersion function will be 
easier with matrix formalism.   38
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Closed Dispersion Trajectory (cont.)

The transformation matrix for the dispersion function can be obtained by substituting 
Eq. 13 in 7 and with some mathematical arrangements we get, 
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Using the periodic closed orbit conditions applied to the circular accelerators we 
can show that, 

Once the η and η’ have been determined at one point s0, the values at any point can 
be calculated.

πν
η

πν
η

2

2

sin4
')1('
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')'1(

DCDC
CS
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= Again integer tune values 
are to be avoided. 

Beam Size:
We have,                                      for the trajectory of a particle. Averaging the 
square of this expression and finding RMS value, we find the rms size of the beam 
due to betatron motion and momentum spread looks like  

δβ )()()( sDsusu +=

A reminder: We have to remember that u(s) stands for both x or y plane.  Hence , 
we have to deal with betatron function, dispersion and beam sizes in both 
horizontal and vertical planes  separately.  

222 δ
π
εβσ D+=
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Most General Formalism

40

The most general form of transformation matrix including both horizontal and 
vertical degrees of freedoms becomes,
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Here we assume that there is no dispersion in vertical plane. This is typically true 
in most of the horizontal circular machines. 
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Momentum Compaction Factor in Transverse Dynamics

In this case ∆L corresponds to the closed orbit dispersion 
trajectory,                                   and substituting in above equation 
we get,

Consider a particle with a fixed momentum p0 which moves along a closed orbit in 
magnetic field. Then the following  relations can be written,

can be changed.  We know that, the differential trajectory length is given by,

Now introduce another particle with a momentum offset of ∆p . Its closed orbit 
must be different from that of  with p0.  By varying the p, the length of the closed 
orbit can be varied, i.e.,  

∫∫ === dsBqpB
p
qds

larPerpendicularPerpendicu πρ
π

ρ 2
   and  1   ,2 0

0

∫= dsL

∫

∫∫

=









+==+








+=

dsx∆L

dsxd∆LLxdsd

D

DD

ρ

ρ
σ

ρ
σ

or  

1or     1

p
psDsDx ∆

== )()( δ

∫∫ ==








 ∆




 ∆

⇒
∆

•=
∆ dssD

L
p
p

L
L

p
pdssD

LL
L

ρ
α

ρ
)(1     )(1

c

Momentum compaction factor Momentum compaction factor 
& Dispersion function

41

20



Linear Deviations from the Ideal Lattice
So far we have established the basic principles underlying the single particle  
accelerator design. In reality, we have to deal with electric  and magnetic systems 
having non-uniformity (called systems errors). 

l
B

Bl
p
B

ρ
α ∆

=
∆

=

∆B is unintentional uniform field over length “l” which is different from everywhere 
else (treated as an error).

Dipole errors or Steering errors:
For a circular accelerator there is a closed orbit 
(ideal orbit) by design. For a particle with non-zero 
emittance (i.e., x≠0, or x’≠0 or both) we expect 
betatron oscillations about the closed orbit. Suppose 
that a particular dipole magnet in one of its arcs has 
a field slightly different from its intended value and 
gives a single steering error,  

Now let (x0,x0’) be the coordinates of a particle  (which would follow reference 
orbit or has a betatron oscillations) just outside of the special dipole.  Let M 
represent the single turn transfer matrix for the ring.  Then, for stability of the 
particle we demand that after the particle goes through the error region the 
coordinates do not change. This means,  
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Dipole Errors(cont.)
Solving for x0 and x0’, we get,

These  equations also show that dipole error in an accelerator ring prohibit integer 
tunes for beam to be stable.  
If the dipole error is distributed around the ring (which is generally the case), then 
the closed orbit can be obtained by integrating over all dipole kicks.
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Conclusions: the dipole errors and off momentum particles make integer tunes
forbidden in a circular accelerators.
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Quad Errors

If the perturbation is distributed around the ring, then the change in tune is given by,

Further, a gradient error changes beta function as follows, 

Conclusions:The quadrupole errors make half integer tunes forbidden in circular 
accelerators.

Thus, as ν n/2 with n= integer ∆β ∞ or the beam becomes unstable.

∫ ∆=
∆

=∆ dssKs )()(
4
1

2
β

ππ
φν

dtstKtss )]2)()((2cos[)(
2sin2
)()( πνφφβ
πν

ββ +−∆=∆ ∫

44

If this error is local and at one point in the ring then it can be shown that the change 
in phase advance at that cell is

010 sin
2
1coscos φβφφ dsK∆−=− error is occurring at s=s1 

0)]()(['' 0 =∆++ usKsKu

Quadrupole Errors:
Let K0(s) be the design quadrupole strength and ∆K be the quad error at a point in 
the ring.  The with ∆p=0 the equation of motion becomes,
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Chromaticity
The particles with different energies in a beam will be focused differently dependent 
on their momentum. The lowest order chromatic perturbation is caused by the variation 
of the focal length of the quadrupoles with particle energy. This leads to a shift in tune 
of the machine. 

with 

The quantity ξ is called  “chromaticity” of the machine.  For a “linear” lattice this 
quantity is always negative and ξ is called  “natural chromaticity”. The chromaticity is 
integral part of a circular machine. 

We know that for large ρ, the quadrupole strength, 
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Formally, this is same as a gradient error,  discussed earlier in connection with quadrupole 
errors. Hence, to calculate the shift in tune 

Examples:  Natural chromaticity of Main Injector at Fermilab ≈-33.7, that for 
Recycler it is  -2 (by design) 
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4
1 β
π

ξ
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Chromaticity (cont.)

The chromatic aberrations are corrected using sextupoles.  By means of this system 
higher energy particles are focused more and lower energy particles are defocused. 
Thus, all particles are focused at one point. 
The consequence of this is the betatron frequency becomes dependent upon the 
momentum of the particle.

Consider a particle with ∆p≠0 moving without betatron 
oscillations on the closed dispersion trajectory.∆p>0

∆p<0

p

After Corrections

Now let us introduce a sextupole magnet with D(s)≠0. 
The sextupole filed at x=xD in the horizontal plane is,

Control of these chromatic perturbations in circular machines is important for the 
following two reasons
1.Avoid loss of particles due to tune shifts into resonances
2.To prevent beam loss due to “head-tail  instability”

0
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p
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∆
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1 xgBy =

By

By Notice that the particles with ∆p=0 on the reference orbit 
are not influenced.  With the polarity shown in the figure 
the sextupole deflects electrons with ∆p>0 towards the 
central orbit and those with ∆p<0  are deflected away from 
it. Therefore the closed dispersion orbit calculated for a 
linear machine will change with sextupole  magnets in it.   

orbit

xD for
∆p<0 

xD for
∆p>0 
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Chromaticity (cont.)

000

    ;)(.'
p

qg'm
p
psDm

p
xDgq =

∆
=

The corresponding magnetic field components can be written as, 
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Is this a problem? No! why?
Now consider a particle that executes betatron oscillations around the closed dispersion 
orbit. Let ∆p>0. Let δx and δy be the small deviation from the closed dispersion orbit. 
Then,
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Causes deflection of 
closed dispersion orbit

Thus, the sextupole acts like a position dependent quadrupole with its strength 
increasing with ∆p and influences both horizontal and vertical motion, i.e., it 
introduces coupling between horizontal and vertical motions.

The equivalent quad strength arising from the sextupole magnet is 

By properly choosing its strengths one can compensate 
for chromaticity.
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ξ
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Chromaticity (cont.)
In principle, single sextupole magnet is sufficient to compensate the chromatic 
effects.  In practice a single sextupole magnet introduces aberrations. In order to 
avoid this, two families of sextupole magnets - one in the H-plane and another in the  V 
plane - are used.  

Without any proof we make the following statements:
1.“The adverse effect that would be introduced by a single strong sextupole magnet in 
a circular accelerators can be minimized by using a large number of sextupoles  with 
moderate strength distributed around the ring.”
2.The sextupole errors in the ring introduce resonances at third-integer tunes.

Positively charged beam into the plane of paper

YY YY Y Y

xx

Nominal

Entrance 
point

Focal 
point

Misalignment

Entrance 
point

Focal 
point

Roll

Entrance 
point

Focal 
point

3.   Misalignment and/or role-angle of quadrupoles also introduces coupling 
between horizontal and vertical motions.

x
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Example of Design Lattice
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Beam Transport line
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Example(cont.)
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Example(cont.)
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Example(cont.)
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Example(cont.)
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Tune Space and Resonance Diagram
So far we have learnt a few aspects about the resonances in circular machines
1.Dipole errors integer resonances  (i.e. ν ≠ n, integer)
2.Quadrupoles  half integer resonances (i.e. ν ≠ n/2, integer)
3.Sextupoles    third integer resonances (i.e. ν ≠ n/3, integer)

where  m, n and l are integers. The operating points (νx,νy)  have to be chosen in a 
reasonable distance from resonance lines.  

Also, sextupole or misalignment of magnets like skew quadrupole fields give rise to 
horizontal and vertical coupling.
This leads to a general condition 

lnm yx =+ νν |m|+|n|  = order of the resonance.

Plotting all straight lines for different values of m, n 
and l in a (νx,νy) space produces “resonance” diagram.   

Stop-band: the region of instability in the resonance 
diagram

Stop-band width: Width of the unstable tune

Particles do not survive on integer and half 
integer resonances at all.  But, on other 
resonances particle may survive.
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l=1 νy
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3rd integer 
resonance 
stop-band
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Resonance Diragram (cont)
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Main Injector Tune Diagram

56

9th order 
Resonance

7th order 
Resonance

12th order 
Resonance

MI operating point



Tevatron Tune Diagram
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Computer Programs for Lattice Design 
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Nowadays to design accelerators or beam-lines we do not have to go through 
these laborious mathematical matrix transformations.  To design accelerators 
and beam lines a number of computer programs are available in the market for 
free.
1.MAD – methodical accelerator design, tracking program
2.SYNCH ??
3.TRANSPORT
4.Turtle 
5.TEAPOT  tracking program


